Bell polynomials and generalized Blissard problems

نویسندگان

  • Bruna Germano
  • Maria Renata Martinelli
چکیده

We introduce two possible generalizations of the classical Blissard problem and we show how to solve them by using the second order and multi-dimensional Bell polynomials, whose most important properties are recalled. © 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials

In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...

متن کامل

Complete Bell polynomials and new generalized identities for polynomials of higher order

The relations between the Bernoulli and Eulerian polynomials of higher order and the complete Bell polynomials are found that lead to new identities for the Bernoulli and Eulerian polynomials and numbers of higher order. General form of these identities is considered and generating function for polynomials satisfying this general identity is found.

متن کامل

Two Formulas for Successive Derivatives and Their Applications

Abstract We recall two formulas, due to C. Jordan, for the successive derivatives of functions with an exponential or logarithmic inner function. We apply them to get addition formulas for the Stirling numbers of the second kind and for the Stirling numbers of the first kind. Then we show how one can obtain, in a simple way, explicit formulas for the generalized Euler polynomials, generalized E...

متن کامل

Poisson, Dobinski, Rota and coherent states

Forty years ago Rota G. C. [1] while proving that the exponential generating function for Bell numbers B n is of the form ∞ n=0 x n n! (B n) = exp(e x − 1) (1) used the linear functional L such that L(X n) = 1, n ≥ 0 (2) Then Bell numbers (see: formula (4) in [1]) are defined by L(X n) = B n , n ≥ 0. Let us notice then that the above formula is exactly the Dobinski formula [2] if L is interpret...

متن کامل

q-Poisson, q-Dobinski, q-Rota and q-coherent states

The q-Dobinski formula may be interpreted as the average of powers of random variable X q with the q-Poisson distribution. Forty years ago Rota G. C. [1] proved the exponential generating function for Bell numbers B n to be of the form ∞ n=0 x n n! (B n) = exp(e x − 1) (1) using the linear functional L such that L(X n) = 1, n ≥ 0 (2) Then Bell numbers (see: formula (4) in [1]) are defined by L(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2011